Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Zhi-Min Jin,* Wen-Jie Feng, Li Li, Xin-Ju Ma and Dong-Shun Deng

College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China

Correspondence e-mail: zhimin-j@tom.com

Key indicators

Single-crystal X-ray study T = 296 KMean $\sigma(\text{C}-\text{C}) = 0.004 \text{ Å}$ R factor = 0.030 wR factor = 0.060 Data-to-parameter ratio = 13.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Di-µ-chloro-bis[aqua(caffeine)chlorocopper(II)]

The title compound, di- μ -chloro-bis[aquachloro(3,7-dihydro-1,3,7-trimethyl-1*H*-purine-2,6-dione)copper(II)], [Cu₂Cl₄-(C₈H₁₀N₃O₂)₂(H₂O)₂], has the same chemical empirical formula as another compound [Bandoli *et al.* (1976). *Inorg. Chim. Acta*, **20**, 71–78]. However, the title compound is a dimer arranged around an inversion centre, whereas Bandoli's compound is a chiral polymer. In the title compound, the Cu^{II} atom has a distorted tetragonal pyramidal coordination, formed by three Cl atoms, one N atom of the caffeine ligand and one O atom of a water molecule.

Comment

Caffeine (3,7-dihydro-1,3,7-trimethyl-1,4-purine-2,6-dione) is a purine alkaloid possessing pharmacological properties as a therapeutic agent with analeptic activity. Recently, the title compound, (I), has been synthesized. Among the 13 copper(II)–caffeine structures deposited in the Cambridge Structural Database (*CONQUEST*, Version 1.7; Allen, 2002), another compound (Bandoli *et al.*, 1976) has the same chemical empirical formula but with a different structure from (I). This prompted us to carry out the present structural study.

The asymmetric unit consists of one-half of the dinuclear complex, (I), which is arranged around an inversion centre (Fig. 1). The Cu^{II} atom is pentacoordinated by atom N1 from

The molecular structure of (I), with the atom-labelling scheme. Displacement ellipsoids are drawn at the 40% probability level. [Symmetry code: (i) 1 - x, 1 - y, 1 - z]. Hydrogen bonds are shown as dashed lines.

Received 7 November 2005 Accepted 10 November 2005 Online 16 November 2005

© 2005 International Union of Crystallography

Printed in Great Britain - all rights reserved

A packing diagram for (I), showing the hydrogen-bonding network. Hydrogen bonds are depicted by dashed lines. H atoms not involved in hydrogen bonds have been omitted for clarity.

the caffeine ligand, atom O3 from the H₂O molecule, and atoms Cl1, Cl2 and the symmetry-related Cl2ⁱ [symmetry code: (i) 1 - x, 1 - y, 1 - z]. In (I), atoms Cl1 and Cl2 are *cis* to each other and two Cu^{II} atoms are linked by double Cl bridges, Cl2 and Cl2ⁱ, to form a dimer, whereas in Bandoli's compound, two Cl atoms are trans to each other and the pentacoordinated Cu^{II} atoms are linked by a single Cl bridge to form chiral polymeric chains.

The coordination polyhedron around the Cu^{II} atom may be described as a distorted tetragonal pyramid. The caffeine imidazole atom N1, atom O3 from the water molecule, and atoms Cl1 and Cl2 lie in the basal plane, while atom Cl2ⁱ is located at the apex. The dihedral angle between the mean basal plane and the caffeine plane is $60.0 (4)^{\circ}$. This value is much less than in related copper(II)-purine compounds (Sletten, 1969; De Meester & Skapski, 1971; Biagini Cingi et al., 1972; Bandoli et al., 1976), where the corresponding dihedral angles are approximately 90°. This may be related to the occurrence of a weak $C5-H5\cdots Cl1^{i}$ intramolecular hydrogen-bond interaction (Table 1). The $Cu-Cl2^{i}$ bond distance [2.6504 (11) Å] is obviously shorter than that observed in Bandoli's compound (Bandoli et al., 1976), while the Cu-N1 and Cu-O3 bonds are slightly longer. The geometry of the caffeine ligand is consistent with our previous study (Jin et al., 2005).

The crystal packing of (I) is stabilized by $O-H \cdots O$ hydrogen bonds which build up a three-dimensionnal network (Table 1 and Fig. 2).

Experimental

Caffeine and CuCl₂·4H₂O in a molar ratio of 1:1 were mixed and dissolved in sufficient water by heating to 353 K, when a clear solution resulted. Crystals of (I) were formed by gradual evaporation of water over a period of one week at 293 K.

Crystal data

 $[Cu_2Cl_4(C_8H_{10}N_3O_2)_2(H_2O)_2]$ $M_r = 693.33$ Monoclinic, $P2_1/n$ a = 9.761 (2) Åb = 12.891 (3) Å c = 10.901 (2) Å $\beta = 110.64 \ (2)^{\circ}$ $V = 1283.6 (5) \text{ Å}^3$ Z = 2

Data collection

Siemens P4 diffractometer (i) scans Absorption correction: ψ scan (North *et al.*, 1968) $T_{\min} = 0.504, \ T_{\max} = 0.536$ 2763 measured reflections 2393 independent reflections 1569 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2
$R[F^2 > 2\sigma(F^2)] = 0.030$
$wR(F^2) = 0.060$
S = 0.80
2392 reflections
172 parameters

Cell parameters from 34 reflections $\theta = 6.1 - 14.3^{\circ}$ $\mu = 2.12 \text{ mm}^{-1}$ T = 296 (2) K Prism, green $0.32 \times 0.30 \times 0.30$ mm $R_{\rm int} = 0.050$ $\theta_{\rm max} = 25.5^{\circ}$ $h = 0 \rightarrow 11$ $k = 0 \rightarrow 15$ $l = -13 \rightarrow 12$ 3 standard reflections

every 97 reflections

intensity decay: 0.5%

 $D_x = 1.794 \text{ Mg m}^{-3}$

Mo $K\alpha$ radiation

H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_0^2) + (0.0292P)^2]$ where $P = (F_0^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.30 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -0.33 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond	geometry	(A,).	

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C5-H5\cdots Cl1^{i}$ $O3-H3A\cdots O2^{ii}$ $O3-H3B\cdots O1^{iii}$	0.93 0.84 (1) 0.85 (1)	2.62 1.92 (1) 1.90 (2)	3.544 (3) 2.758 (3) 2.708 (3)	172 175 (3) 159 (3)
Symmetry codes: (i	-x+1, -y+1	-1, -z + 1; (ii)	-x+1, -y+3	1, -z + 2; (iii)

 $x - \frac{1}{2}, -y + \frac{3}{2}, z - \frac{1}{2}.$

The H atoms of the water molecule were located in a difference Fourier map and incorporated in the refinement with O-H distances restrained to 0.85 (1) Å and $H \cdots H$ distances restrained to 1.39 (2) Å. H atoms attached to C atoms were placed in calculated positions and allowed to ride on their parent atoms at distances of C-H = 0.96 (C_{methyl}) or 0.93 Å (C_{aromatic}) , with $U_{\text{iso}}(H) = 1.2U_{\text{eq}}(C_{\text{aromatic}})$ or $1.5U_{eq}(C_{methyl}).$

Data collection: XSCANS (Siemens, 1994); cell refinement: XSCANS; data reduction: SHELXTL; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL (Bruker, 1998).

References

- Allen, F. H. (2002). Acta Cryst. B58, 380-388.
- Bandoli, G., Cingibiagini, M., Clemente, D. A. & Rizzardi, G. (1976). Inorg. Chim. Acta, 20, 71-78.
- Biagini Cingi, M., Chiesi Villa, A., Gaetani Manfredotti, A. & Guastini, C. (1972). Crvst. Struct. Commun. 1, 363-366.
- Bruker (1998). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
- Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.

De Meester, P. & Skapski, A. C. (1971). J. Chem. Soc. A, pp. 2167–2170. Farrugia, L. J. (1997). J. Appl. Cryst. **30**, 565.

- Jin, Z.-M., Li, L., Hu, M.-L., Su, H. & Tong, C.-X. (2005). Acta Cryst. E61, m1849–m1851.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

- Siemens (1994). XSCANS. Version 2.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Sletten, E. (1969). Acta Cryst. B25, 1480–1491.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.